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Numerical studies are described of the flows generated by a sphere moving vertically in
a uniformly stratified fluid. It is found that the axisymmetric standing vortex usually
found in homogeneous fluids at moderate Reynolds numbers (25 6 Re 6 200) is
completely collapsed by stable stratification, generating a strong vertical jet. This is
consistent with our experimental visualizations. For Re = 200 the complete collapse
of the vortex occurs at Froude number F ' 19, and the critical Froude number
decreases slowly as Re increases. The Froude number and the Reynolds number are
here defined by F = W/Na and Re = 2Wa/ν, with W being the descent velocity
of the sphere, N the Brunt–Väisälä frequency, a the radius of the sphere and ν the
kinematic viscosity coefficient. The inviscid processes, including the generation of the
vertical jet, have been investigated by Eames & Hunt (1997) in the context of weak
stratification without buoyancy effects. They showed the existence of a singularity of
vorticity and density gradient on the rear axis of the flow and also the impossibility of
realizing a steady state. When there is no density diffusion, all the isopycnal surfaces
which existed initially in front of the sphere accumulate very near the front surface
because of density conservation and the fluid in those thin layers generates a rear
jet when returning to its original position. In the present study, however, the fluid
has diffusivity and the buoyancy effects also exist. The density diffusion prevents
the extreme piling up of the isopycnal surfaces and allows the existence of a steady
solution, preventing the generation of a singularity or a jet. On the other hand, the
buoyancy effect works to increase the vertical velocity to the rear of the sphere by
converting the potential energy to vertical kinetic energy, leading to the formation of
a strong jet. We found that the collapse of the vortex and the generation of the jet
occurs at much weaker stratifications than those necessary for the generation of strong
lee waves, showing that jet formation is independent of the internal waves. At low
Froude numbers (F 6 2) the lee wave patterns showed good agreement with the linear
wave theory and the previous experiments by Mowbray & Rarity (1967). At very low
Froude numbers (F 6 1) the drag on a sphere increases rapidly, partly due to the lee
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wave drag but mainly due to the large velocity of the jet. The jet causes a reduction of
the pressure on the rear surface of the sphere, which leads to the increase of pressure
drag. High velocity is induced also just outside the boundary layer of the sphere so
that the frictional drag increases even more significantly than the pressure drag.

1. Introduction
Most of the previous studies on stratified flows have been devoted to horizontal

flows since many typical flows relevant to geophysical phenomena, such as mountain
gravity waves, are horizontal. Indeed, we often observe extraordinary phenomena due
to the buoyancy effects in stratified horizontal flows, including the collapse of the
standing vortex and the subsequent generation of horizontal eddies downstream of
an obstacle at strong stratification (Hunt & Snyder 1980). In particular, horizontal
flows of stratified fluids past a sphere have been studied experimentally by Lofquist
& Purtell (1984), Lin et al. (1992) and Chomaz, Bonneton & Hopfinger (1993) among
others, and numerically by Hanazaki (1988).

On the other hand, vertical flows are also important, particularly in their application
to the aerosol diffusion in the atmosphere and upper ocean biogeochemistry. For
example, the settling of conglomerates of organic materials which sink rapidly in the
ocean controls the rate of nutrient regeneration and links the pelagic and benthic
food webs (Billet et al. 1983; Graf 1989).

The flow around a vertically moving obstacle in stratified fluid, however, has
not been studied extensively. The lee wave far behind a sphere has been studied
experimentally by Mowbray & Rarity (1967) at low Froude numbers (0.4 6 F 6 2)
with a moderate Reynolds number (Re 6 200), but little attention has been paid to
the flow near the obstacle. Mowbray & Rarity mention that ‘no systematic study was
made of the behaviour of fluid in the boundary layer or in the wake, other than
ensure that periodic vortices were not generated’. Indeed, although a thin vertical
streak can be identified in the shadowgraphs by Mowbray & Rarity (their plate 1 or
figure 106 of Lighthill 1978), no explanations have been given of that phenomenon.
Our results will clarify that this thin streak appears along with the collapse of the
standing vortex usually found in homogeneous fluids. It takes the form of a long
narrow filament and the velocity distributions obtained in our numerical study show
that it is actually a strong jet along the vertical axis.

The change of the downstream wake patterns with increasing stratification obtained
by earlier shadowgraph experiments (Ochoa & Van Woert 1977) is shown in figure 1.
The figure shows that at weak stratifications with a moderate Reynolds number
(F = 25.81, Re = 800) a standing vortex exists just as in homogeneous fluids
(figure 1a). Increasing stratification (F = 12.64, Re = 800) causes complete vortex
collapse and the generation of a long narrow filament or jet (figure 1b). At stronger
stratification (F = 4.21, Re = 762), the filament/jet becomes narrower (figure 1c).
The Froude number and the Reynolds number are here defined by F = W/Na and
Re = 2Wa/ν, with W being the descent velocity of the sphere, N the Brunt–Väisälä
frequency, a the radius of the sphere and ν the kinematic viscosity coefficient.

It is of interest to note that near axisymmetry of the flow is retained even at
Re ' 800, well above the critical Reynolds number (' 500) for the onset of vortex
shedding in homogeneous fluids. The parameter region (Re, 1/F) which classifies the
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(a)

(b)

(c)

Figure 1. Shadowgraphs of the flow around a sphere moving vertically in a stratified fluid.
(a) (F, Re) = (25.81, 800); (b) (12.64, 800); (c) (4.21, 762).

downstream wake patterns is shown in the Appendix (figure 16) along with a brief
explanation of the experimental methods used in Ochoa & Van Woert (1977).

In this numerical study we investigate the mechanisms of vortex collapse and the
subsequent generation of the rear filament/jet as the stratification increases. The
collapse and the jet formation occur well before the generation of the strong lee
waves, showing that the jet formation is almost independent of the internal wave
generation. At low Froude numbers we show the generation of internal wave patterns
in agreement with the linear theory and the experiments by Mowbray & Rarity (1967).
We show however that a stronger jet is generated at lower Froude numbers due to
buoyancy effects.

Figure 2 shows the parameter region (Re, 1/F) investigated in this study. The
experiments by Ochoa & Van Woert (1977) lie inside the diamond-shaped region
covering the area 200 < Re < 4000 and 0.028 < 1/F < 0.265 (3.77 < F < 35.35).
The solid line within the diamond region separates the upper region where the
downstream filaments were observed from the lower region where vortical wakes as
in homogeneous fluids were observed (cf. figure 16). The shaded region denotes the
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Figure 2. Parameter range of this numerical study and previous experimental studies. The shaded
area represents the parameter region investigated in this numerical study. The diamond-shaped
region denotes the region investigated experimentally by Ochoa & Van Woert (1977). A solid line is
drawn in that region, above which the filament wakes exist and below which vortical wakes similar
to those observed in homogeneous flows exist. The small triangles denote the representative cases
discussed in § 4. The other symbols represent the data used in figures 8 and 11.

computed parameter region in this study and the triangles specify the cases used
for the discussion in § 4, including the comparison with experiments by Mowbray &
Rarity (1967).

Recently, during the revision of this paper, we came across the experiments by Srdić-
Mitrović, Mohamed & Fernando (1999) which investigated the flow around small
spherical particles moving vertically across a density interface. In their experiments,
the top and bottom layers are homogeneous fluids with different densities, with an
interfacial layer of approximately uniform stratification between them. A spherical
particle in the diameter range of 0.25–1.80 mm was released in the upper homogeneous
layer and it descended through the stratified interfacial layer of 2–4 cm to the bottom
homogeneous layer.

In the parameter range of 1.5 6 Re 6 15 and 3 < F < 10 (0.1 < 1/F < 0.33) (see
figure 2), they found an elongated tail or a caudal fluid column dragged from the
upper homogeneous layer. The dragging of the fluid from the upper homogeneous
layer is known from two-layer fluid experiments in chemical engineering, but they
investigated the effect of continuous stratification on the caudal fluid column. Thus,
their experiments have much more similarity to the present study. Their flow was
unsteady, however. The caudal fluid column is generated once and it is ruptured with
time. In their study the time-development of the descending velocity was measured



Vertical flow past a sphere in a stratified fluid 215

w

uz

r
0

W

ρe

Figure 3. A schematic description of the vertical flow of stratified fluid past a sphere.

to estimate the drag on a particle. They found that the drag coefficient was an order
of magnitude larger than its homogeneous counterpart and most of the contribution
comes from the static effect of buoyancy force due to the bulk of caudal fluid dragged
from the upper layer. Therefore, the internal-wave contribution to the stratification
drag was estimated to be small.

To our knowledge, ours is the first study on the effect of continuous and uniform
stratification throughout the fluid. We found, however, some similarities to the results
of Srdić-Mitrović et al. (1999) which had discontinuities in stratification. For example,
the drag increases much more than the prediction of the linear wave drag (Warren
1960), showing that the rear caudal fluid column in their study or the filament/jet in
the present study is essential for the increase of the drag. We investigate the structure of
the rear jet and the pressure distributions around the sphere to clarify the mechanisms
of drag increase in the steady flow of the wholly continuously stratified fluid.

2. Basic equations
We consider a sphere moving downward at a constant speed in a uniformly strat-

ified fluid. This is equivalent to an upward flow of a uniformly stratified fluid past a
sphere (see figure 3). We assume that the density is diffusive. The diffusion of density
is essential, particularly when we consider an obstacle which moves ‘vertically’ in a
stratified fluid. In that case, if there is no diffusion (κ = 0 in equation (2) below),
density is conserved along the flow direction of the fluid and all the isopycnals which
initially existed in front of the obstacle accumulate very close to its front surface. Then,
the vertical density gradient just ahead of the sphere increases without limit. This not
only causes technical problems in computation but also prevents the flow from reach-
ing steady state. We consider therefore a stratified fluid with density diffusion. This
constitutes a realistic problem directly corresponding to the laboratory experiments
and at the same time avoids the above difficulty inherent in non-diffusive fluid.

The governing equations for the flow of a stratified diffusive fluid with viscosity are

ρ̃
Dũ

Dt̃
= −∇̃p̃− ρ̃gẑ + µ∇̃2ũ, (1)

Dρ̃

Dt̃
= κ∇̃2ρ̃, (2)
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and

∇̃ · ũ = 0, (3)

where t̃ is the time, ũ = (ũ, ṽ, w̃) is the velocity, p̃ is the pressure, ρ̃ is the density, g is
the acceleration due to gravity, ẑ is the unit vector in the vertical direction, µ is the
viscosity coefficient and κ is the diffusivity coefficient. Equation (3) represents mass
conservation under the assumption that the term ρ̃−1 Dρ̃/Dt̃ is negligibly small. This
approximation is justified provided the density variation in the vertical direction is
small.

When the fluid moves upward past the sphere at a constant velocity W , the basic
fluid density ρe and the hydrostatic pressure pe, which change continuously with time
at a fixed height z̃, are given by

ρe(z̃, t̃) = ρo +
∂ρe

∂z̃
(z̃ −Wt̃ ), (4)

and

pe(z̃, t̃) = −
∫ z̃

ρe(z̃, t̃)g dz̃, (5)

where ∂ρe/∂z̃ is the vertical gradient of the undisturbed density field which is assumed
to be a constant here, and ρo = ρe(z̃ = 0, t̃ = 0) is a reference density.

We decompose the density and the pressure into the basic states and their pertur-
bations ρ̂ and p̂ respectively. Then the total density and pressure can be written as

ρ̃ = ρe(z̃, t̃) + ρ̂, (6)

and

p̃ = pe(z̃, t̃) + p̂. (7)

Inserting (6) and (7) into (1), subtracting the basic state and using the Boussinesq
approximation, it follows that

Dũ

Dt̃
= − 1

ρo
∇p̂− ρ̂

ρo
gẑ+ν∇̃2ũ, (8)

where ν = µ/ρo is the kinematic viscosity. Similarly, substitution of (6) into (2) gives

Dρ̂

Dt̃
= −∂ρe

∂z̃
(w̃ −W ) + κ∇̃2ρ̂. (9)

To obtain the non-dimensional version of (8) and (9), we scale distance by the
radius of the sphere a, velocities by the sphere velocity W , pressure perturbation by
ρoW

2, and density perturbation by −a∂ρe/∂z̃. Dropping the tildes and the hats that
denote non-dimensional variables, the resulting set of equations becomes

Du

Dt
= −∇p− 1

F2
ρẑ +

2

Re
∇2u, (10)

and
Dρ

Dt
= w − 1 +

2

Pe
∇2ρ. (11)

The Péclet number Pe is defined by Pe = Re Sc using the Schmidt number Sc (= ν/κ),
and N is the Brunt–Väisälä frequency defined by

N2 = − g

ρo

∂ρe

∂z̃
.
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The Schmidt number Sc used in the definition of the Péclet number Pe must
be replaced by the Prandtl number Pr if the stratification is due to a temperature
difference.

Since the system of equations (3), (10) and (11) does not contain a term which
explicitly represents the time development of the pressure, we have to formulate a
diagnostic Poisson equation for the pressure which will become a substitute for the
incompressibility condition given by (3). This is accomplished by taking the divergence
of (10) (see also § 3). Hence, the governing equations to be solved are (10), (11) and

∇2p = − 1

F2
∇ · (ρẑ)− ∇ · [(u · ∇)u] +

2

Re
∇2D − ∂D

∂t
, (12)

where D = ∇ ·u. We need a special treatment for D in the actual numerical discretiza-
tion as will be shown later in the discussion of equation (24). The flow geometry
allows axisymmetric solutions to be sought at relatively low Reynolds numbers (fig-
ure 3). This axisymmetry assumption is justified by experiments for Re < 200 in
unstratified fluids (Taneda 1956) and sometimes even for Re > 200 in stably stratified
fluids (Ochoa & Van Woert 1977). For example, our experiments (figure 1) show that
the axisymmetric flow is retained for Reynolds numbers well above 200, which is
the upper limit for axisymmetry in homogeneous flow. The vortex shedding and the
transition to turbulence can be inhibited by stratification.

We use cylindrical coordinates with r the radial coordinate in the horizontal
direction and z the vertical coordinate along the symmetry axis of the flow. The
velocity vector is given by u = (u, w), where u is the r-component and w is the
z-component (figure 3). Since the flow is axisymmetric and the velocity satisfies the
divergence-free condition (3), we can define the Stokes stream function ψ by

u = −1

r

∂ψ

∂z
, w =

1

r

∂ψ

∂r
.

The sphere surface is assumed to be insulating so that there is no density flux
across it. Then, the boundary conditions become as follows.

On the sphere surface (z2 + r2 = 1), the velocity satisfies the no-slip condition

u = w = 0. (13)

The boundary condition of no density flux can be written first in dimensional form
as

∇̃ρ̃ · n̂ = 0, (14)

where n̂ is the unit normal to the sphere surface. Then, the substitution of (6) into
(14) gives

z̃

(
∂ρe

∂z̃
+
∂ρ̂

∂z̃

)
+ r̃

∂ρ̂

∂r̃
= 0, (15)

which in non-dimensional form becomes

z
∂ρ

∂z
+ r

∂ρ

∂r
= −z. (16)

The surface boundary condition for the pressure obtained from (10) is

∇p = − 1

F2
ρẑ +

2

Re
∇2u. (17)

Far from the sphere, due to viscosity, diffusivity and geometrical spreading effects,
all the physical quantities asymptote to their unperturbed values. Then, on the outer



218 C. R. Torres, H. Hanazaki, J. Ochoa, J. Castillo and M. Van Woert

boundary of the computed domain the pressure is extrapolated assuming zero normal
derivative

∂p

∂n
= 0, (18)

and the density perturbation is assumed to vanish, i.e.

ρ = 0. (19)

On the downstream (upper) outer boundary the velocities are extrapolated using

∂u

∂z
=
∂w

∂z
= 0, (20)

while on the upstream (lower) boundary they are fixed to be

u = 0, w = 1. (21)

3. The numerical method
The computations were performed on HP9000-735 and Origin2000 Silicon Graphics

computers using the MAC (marker and cell) method which was originally developed
by Harlow & Welch (1965) and was extended to incompressible stratified flows by
Hanazaki (1988), in which the non-divergence of velocity can be similarly applied. The
method has been used in other numerical studies of stratified flows (e.g. Hanazaki
1989, 1994) and also has been used to simulate the stratified flows with density
diffusion (Torres 1997; Torres et al. 1999).

We use the explicit Euler method for the time development. Then, the equations
(10), (11) and (12) become

un+1 − un
∆t

+ (un · ∇)un = −∇pn − 1

F2
ρnẑ +

2

Re
∇2un, (22)

ρn+1 − ρn
∆t

+ (un · ∇)ρn = wn − 1 +
2

Pe
∇2ρn, (23)

and

∇2pn = − 1

F2
∇ · (ρnẑ)− ∇ · [(un · ∇)un] +

2

Re
∇2Dn − Dn+1 − Dn

∆t
, (24)

where the superscript n denotes the integration time t = n∆t. In the MAC method,
Dn+1 in (24) is set equal to zero while Dn is retained to prevent the accumulation
of numerical round-off errors and to simultaneously implement the divergence-free
condition given by equation (3).

Given the values of u and ρ at time step n (n = 0 corresponds to the initial
condition), the Poisson equation (24) for the pressure pn can be solved using the SOR
(successive over-relaxation) method. Then substituting the obtained pn into (22) and
(23), the values of u and ρ at the next time step t = (n+ 1)∆t are obtained. This cycle
is repeated in the succeeding time steps.

The equations (22), (23) and (24) constitute a time-developing problem, but in this
study we are interested in the steady solutions. Therefore, the process is repeated
until the convergence criterion |fn+1 − fn|max/(fnmax − fnmin) 6 10−4 is satisfied, where f
represents any one of u, w, p or ρ.
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3.1. Transformation to curvilinear coordinates

To generate a numerical grid which resolves both the velocity and density boundary
layers and at the same time to simplify the implementation of boundary conditions,
a transformation of coordinates from the physical plane (z, r) to the computational
plane (ξ, η) is performed. In general, the transformation is given by

z = z(ξ, η), r = r(ξ, η), (25)

and the equations (22), (23) and (24) become

wn+1 − wn
∆t

+
unrη − wnzη

J
wnξ +

wnzξ − unrξ
J

wnη = −rηp
n
ξ − rξpnη
J

− 1

F2
ρn +

2

Re
∇2wn, (26)

un+1− un
∆t

+
unrη −wnzη

J
unξ +

wnzξ − unrξ
J

unη =−zξp
n
η − zηpnξ
J

+
2

Re

(
∇2un− u

n

r2

)
, (27)

ρn+1 − ρn
∆t

+
unrη − wnzη

J
ρnξ +

wnzξ − unrξ
J

ρnη = wn − 1 +
2

Pe
∇2ρn, (28)

and

∇2pn = − (rηu
n
ξ − rξunη)2 + 2(zξu

n
η − zηunξ)(rηwnξ − rξwnη) + (zξw

n
η − zηwnξ)2

J2

+
(rηu

n
ξ − rξunη + zξw

n
η − zηwnξ)

J∆t
− 1

JF2
(zξρ

n
η − zηρnξ), (29)

where the subscripts ξ and η denote partial differentiation and the Laplacian operator
∇2 is defined in the computational plane by

∇2A =
(αAξξ − 2βAξη + γAηη)

J2

+
(αzξξ − 2βzξη + γzηη)(rξAη − rηAξ) + (αrξξ − 2βrξη + γrηη)(zηAξ − zξAη)

J3
. (30)

The Jacobian of the transformation, J , and the transform coefficients α, β and γ
are given by

J = zξrη − zηrξ, α = z2
η + r2

η, β = zξzη − rηrξ, γ = z2
ξ + r2

ξ.

The finite-difference equations are obtained by discretizing the above equations. All
space derivatives are replaced by central differences of second-order accuracy, while
the convection terms are approximated by a third-order upwind scheme (Kawamura,
Takami & Kuwahara 1986), which can be described as(

f
∂u

∂ξ

)
i,j

= fi,j
−ui+2,j + 8(ui+1,j − ui−1,j) + ui−2,j

12∆ξ

+ |fi,j | ui+2,j − 4ui+1,j + 6ui,j − 4ui−1,j + ui−2,j

4∆ξ
, (31)

where f is an arbitrary function and (i, j) denotes the grid point in the transformed
plane (ξ, η). This scheme contains a numerical viscosity which can be estimated to
the leading order as

(∆ξ)3 |f| ∂
4u

∂ξ4
.

The time increment ∆t is set to be 1× 10−3 or 2.5× 10−3.
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3.2. Grid generation

In order to generate a grid, the discrete variational (DV) formulation is used. In the
general DV formulation, measures of three properties of the grid are controlled: the
spacing between the grid lines (Fs), the area of the grid cells (Fa), and the orthogonality
of the grid lines (Fo). The grid is generated directly by solving a minimization problem
resulting from a weighted combination of the three functionals (Fs, Fa, Fo):

minimize F = AFs + BFa + CFo (A,B, C > 0),

where A, B and C are the functional scaling factors. The resulting minimization
problem is solved using a conjugate gradient iterative method developed by Castillo
(1991). We set the three parameters to A = 0.01, B = 0.25 and C = 0.

To calculate the boundary layer structure accurately we must estimate the thickness
of the velocity and the density boundary layers. As the equation for the density (11)
or (23) shows, the density boundary layer is controlled by the Péclet number Pe. The
density boundary layer thickness δd can be estimated as O(1/

√
Pe) = O(1/

√
Re Sc)

(Schlichting 1968; Yih 1969), which is thinner than the viscous boundary layer for
fluids with a high Schmidt number (Sc > 1). For salt as the stratifying medium, Sc =
700. Then, for Re = 200, the density boundary layer thickness becomes approximately
δd = 0.0053. Therefore, we concentrate the grid points near the sphere surface such
that the smallest mesh size is 0.00082. Under this condition, the distance of point
(i, j) = (33, 6) from the sphere surface is 0.006. Therefore, there are about six points
in the density boundary layer. For the same Reynolds number the viscous boundary
layer thickness δv is estimated to be O(1/

√
Re/2) = 0.1, which is easily resolved

by the same grid. In our grid, at 24 points away from the sphere surface, i.e. at
(i, j) = (33, 24), the distance from the sphere surface is 0.073(< 0.1). The density and
velocity distributions in each boundary layer were almost unchanged when we halved
the grid size near the sphere surface (see also § 4.4).

The external boundary of the grid is elliptic with a size of 40 sphere diameters in
the vertical direction and 20 diameters in the horizontal direction. The grid consists
of 65 × 90 (ξ × η) mesh points in the (z, r)-plane. Figure 4 shows the grid near the
sphere.

In order to study how the collapsing/vanishing of the rear vortex depend on the
stratification, we used Froude numbers and Reynolds numbers as shown in figure 2.
More specifically we used 20 Froude numbers and 40 Reynolds numbers in the range
of 0.2 6 F 6 200 and 10 6 Re 6 800.

Nearly steady solutions defined by the convergence criterion (§ 3) were obtained
at time t = 40–60, the indefiniteness being dependent on the Reynolds number and
the Froude number. The velocity distribution in homogeneous fluids is controlled
by Re and the dissipation time scale is given by Re × l2, where l is the length scale
of the flow. Usually, in numerical simulations of the steady flow of homogeneous
fluids, the velocity reaches steady state faster for smaller Re when some initial guess
of the velocity distribution, e.g. uniform flow, is used. In our problem, the governing
equations (10) and (11) have a diffusion term controlled by Pe and the density
diffusion time scale is Pe × l2. In our simulation, the Schmidt number is fixed at
Sc = 700 (>> 1) so that the Péclet number Pe = Re Sc is determined only by the
Reynolds number Re. Then, for a larger Reynolds number, both the dissipation time
scale and the diffusion time scale become larger and it generally takes a longer time
to reach the steady state. For more detailed explanation of the numerical method, the
reader can refer to Torres (1997).
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Figure 4. Close-up view of the grid used for the computation.

4. Results
4.1. Vortex collapse and rear jet formation

In figure 5 we show the typical change of flow patterns with stratification. At these
moderate Reynolds numbers (Re = 70–200) we clearly observe the collapse of the
rear axisymmetric vortex with increasing stratification.

When the stratification is very weak (F = 200), the flow pattern is almost identical
to that of homogeneous fluid: the size of the rear vortex (see also figure 8) and
the drag coefficient Cd = 0.8 (Re = 200) and Cd = 1.36 (Re = 70) (figure 11) agree
well with the previous experiments for homogeneous fluids (Taneda 1956; Schlichting
1968), numerical simulations for homogeneous fluids (Chang, Liou & Chern 1992;
Chang & Maxey 1994) and numerical simulations for horizontal stratified flows at
F = 200 (Hanazaki 1988).

As the stratification becomes stronger, the rear vortex collapses. The collapse is
significant even with relatively weak stratification (figure 5b, F = 20), well before the
generation of strong internal waves. This shows that the phenomenon is essentially
independent of internal wave generation. This is different from the horizontal stratified
flow (Hanazaki 1988), in which the vortex collapse does not become significant until
the stratification becomes much stronger (F 6 2) so that large-amplitude internal
waves are generated. In the present case the vortex completely collapses at F ' 19,
leaving a strong downstream jet on the symmetry axis of the flow.

The mechanism of the rear jet generation can be explained as follows. Let us
assume that the stratification is made up of many thin layers with slightly different
densities. The layers would be deformed when the sphere passes through. All the
isopycnals or the layers which existed initially in front of the sphere must accumulate
very near the front surface of the sphere when the density diffusion is negligible and
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Figure 5. The isopycnals (left half of each figure) and Stokes streamlines (right half) for various
Froude and Reynolds numbers. (a) (F, Re) = (200, 200); (b) (20, 200); (c) (2, 200); (d) (200, 70);
(e) (20, 70); (f) (2, 70). Isopycnals are drawn for ρ − z = 0,−2,−4,−6, . . . . The contour
ρ − z = 0 asymptotes to the line z = 0 in the limit r → ∞. The streamlines are drawn for
ψ = 2.5× 10−3 × n2(n = 0, 1, 2, . . .) and for ψ = −1.0× 10−4 × n2(n = 1, 2, . . .).

the density is conserved along the fluid flow direction (cf. § 2). Then the fluid in those
layers pushed downward by the sphere will go back to its original position because
of mass conservation, and the layers near the sphere surface have to become thinner
and thinner with time.

When the layers become thin enough, the density gradient becomes large and the
diffusion effects become larger and finally balance the above non-diffusive effect. Then
a steady state could be reached. Figure 6 shows that a number of density contours
do disappear on the sphere surface due to diffusion in the density boundary layer.

The flow around an obstacle moving vertically in a weakly stratified inviscid fluid
but without buoyancy effects has been studied by Eames & Hunt (1997). They
did not apply the Boussinesq approximation and investigated the solution of the
momentum equation without a buoyancy term. The equation incorporated the effect
of density variation only in the inertial term. They predicted, however, the appearance
of attached streamlines along which the density gradient and the vorticity becomes
singular. The velocity field downstream of the body showed a localized ‘jet’ along
the centreline. The velocity of the jet was found to be proportional to the density
gradients.

Our results show that these attached streamlines in reality accumulate very near the
rear axis of the flow and form a strong jet. The conditions in our study are different
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Figure 6. Isopycnals near the sphere (Re = 200). (a) F = 200; (b) F = 20; (c) F = 2. Contours are
drawn for ρ− z = 0, −2, −6, −10, −14 and −18. The horizontal lines denote the isopycnals on the
sphere surface.

from their study in that the buoyancy effect is included and the density is diffusive.
While the diffusion halts the piling-up of isopycnals and prevents the generation of
singularities and the jet, the strong buoyancy force generates a large vertical velocity.
The flow must be unsteady in inviscid fluid, but a nearly steady state appears when
density diffusion exists.

For a more direct comparison with the results of Eames & Hunt (1997) we have to
include the effect of density variation in the inertial term of the momentum equation
and not in the buoyancy term, without using the Boussinesq approximation. Those
simulations are of much interest but beyond the scope of this study. The inclusion
of density diffusion would inhibit the extreme piling up of the density surface, and
prevents the generation of the jet which would appear if the fluid is non-diffusive.
Thus, it is expected that the buoyancy force would be necessary to generate a jet if
the fluid is diffusive.

Srdić-Mitrović et al. (1999) have shown that a particle descending from an upper
homogeneous fluid into a stably stratified fluid drags the upper-layer light fluid into
the stratified layer and generates a caudal fluid column. After sufficient intrusion into
the stratified layer, however, the film which surrounds the particle and the caudal
fluid column is ruptured. Then, the detached film rises and most of the dragged fluid
goes back to the upper homogeneous layer. In the present study, similar processes,
including the rupture of the light-fluid column and the subsequent detachment from
the sphere appear. But those processes occur continually along with the continual
dragging of the upper light fluid, and a nearly steady state can be reached.

The fluid in the continually ruptured layers goes up in a thin layer that surrounds
the boundary layer and it finally forms a jet on the rear axis of the sphere. This
is shown in figure 7, where the downstream velocities are shown for low Froude
numbers (F 6 2). Comparison of figure 7(a) (F = 2) with figure 7(b) (F = 1) or 7(c)
(F = 0.2) shows that the width/radius of the jet decreases with decreasing Froude
number in qualitative agreement with the experiments (cf. figure 1). The maximum
speed in the jet is w = 8.3–9.4 in the parameter range of 0.4 6 F 6 2, showing a
rather weak dependence on F .

For much lower Froude numbers (F 6 0.4), the speed of the jet increases con-
siderably. At F = 0.2 (figure 7c) the maximum speed is w = 14 and it increases up
to w = 20 for the lowest Froude number (F = 0.1) investigated in this study. Since
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Figure 7. Velocity distributions in the rear jet observed at low Froude numbers (Re = 200).
(a) F = 2; (b) F = 1; (c) F = 0.2.

the potential energy attained by the fluid is large when the stratification is strong,
the kinetic energy converted from the potential energy is large in strongly stratified
fluid. Then the velocity of the vertical jet is expected to become generally larger with
increasing stratification.

The Reynolds numbers used in the numerical simulations are lower than in the
experiments by Ochoa & Van Woert (1977, cf. figure 1) but the mechanism of vortex
collapse and jet formation would be the same. In the experiments for Re ≈ 800,
complete collapse of the vortex occurs at F ≈ 10 (figure 1b). The threshold value of
F for complete collapse becomes somewhat lower for larger Reynolds numbers, since
the original size and strength of the rear vortex is larger for larger Reynolds numbers
and stronger stratification becomes necessary to collapse the vortex. In our numerical
simulations, the results for Re = 70 show complete collapse of the rear vortex at
F = 20, while for Re = 200 there is no complete collapse at the same Froude number.

It is of interest, however, to note that the critical Froude number Fc for complete
collapse is rather independent of the Reynolds number and the value is generally
around Fc = 20 (cf. figure 16). This illustrates that the collapse is essentially an effect
of stratification and the viscous effects are of secondary importance. This can be seen
also in figure 8, where the separation angle of the boundary layer is shown for a
wide range of Froude numbers (0.01 < 1/F < 10) and three representative Reynolds
numbers. This figure shows that in homogeneous fluids (1/F � 1) the separation
angles θs agree with the previous studies. For example, θs = 65◦ for Re = 200 and
θs = 42◦ for Re = 50 in agreement with the experiments by Taneda (1956). The
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figure also shows that complete collapse of the standing vortex occurs at only slightly
stronger stratifications for higher Reynolds numbers.

Our simulations (Torres et al. 1999) performed for larger Reynolds numbers (Re >
200) with weak stratification (F = 200) showed good agreement with the numerical
study of Fornberg (1988) for homogeneous fluids. The experiments for homogeneous
fluids show that the rear standing vortex becomes unstable for Re & 500 and
the downstream flow becomes non-axisymmetric. In the presence of stratification,
however, the rear vortex is first collapsed by stratification and a rear jet is generated.
Then, approximately axisymmetric flows have been observed even at rather high
Reynolds numbers (Re > 800) as already shown in figure 1.

Finally it is important to note that, even after the complete collapse of the rear
vortex (F < 20), large vorticity actually exists within the rear jet, although the flow
pattern resembles a potential flow with fore-and-aft symmetry. Therefore, the flow is
not at all irrotational at low Froude numbers. This is again consistent with the results
of Eames & Hunt (1997), in which the singularity of vorticity along the rear axis is
predicted, although such a singularity may not exist when there is density diffusion.

4.2. Lee waves

In figure 9, our numerical results at low Froude numbers (Re = 200) are compared
with the experiments by Mowbray & Rarity (1967), the only experiment that we know
of in which the lee wave patterns generated by a vertically moving obstacle have been
investigated. Our lee wave patterns, which are almost steady at low Reynolds numbers,
agree well with their shadowgraphs in spite of the possible difference in the Reynolds
number. In Mowbray & Rarity (1967), the Reynolds numbers were kept less than
200 but more specific values are not given in their paper.

Applying the principle of stationary phase to the linear wave solutions presented
in an integral form, we can define from which points the major contribution to
the integral come (Mowbray & Rarity 1967; see also Lighthill 1978). Those points
constitute a line of constant phase and the equations for its coordinates (r, z) are

r = FΦ

(
σ−4 + σ−2 − 1

1 + σ2(2− σ2)2(1− σ2)−3

)1/2

, (32)
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Figure 9. Comparison of the isopycnals obtained in this numerical study with shadowgraphs
by Mowbray & Rarity (1967). The isopycnals given by dashed lines in each figure show the
contours of zero density perturbation ρ = 0 obtained by numerical simulation at Re = 200 and
the shadowgraphs were taken at Re 6 200 but exact values of Re are uncertain. (a) F = 0.4;
(b) F = 0.59; (c) F = 2.

and

z = FΦσ(2− σ2)(1− σ2)−3/2

(
σ−4 + σ−2 − 1

1 + σ2(2− σ2)2(1− σ2)−3

)1/2

, (33)

where Φ is the phase and σ (0 < σ < 1) is a variable parameter. The wave amplitude
will be zero at Φ = n+ π/4 (n = 0, 1, 2, . . .).

Figure 10 shows the comparison of lines of constant phase (Φ = n + π/4, n =
0, 1, 2, . . .) obtained from the linear theory and the corresponding contours of zero-
density-perturbation lines (ρ = 0) obtained by numerical simulations. The agreement
is generally good. The results for the lines Φ = π/4 show rather poor agreement for
F 6 2 but this can be explained by the fact that the method of stationary phase is
applicable only to the far field. It is of interest to note that the lee wave wake, the
diverging pattern of the density contours, appears even at weak stratifications (e.g.
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Figure 10. Comparison of the isopycnals of ρ = 0 obtained by this numerical study (dashed lines)
at Re = 200 with the lines of constant phase obtained by the linear wave theory (solid lines). The
contours are drawn for phase Φ = (n+ 1/4)π, (n = 0, 1, 2, . . .). (a) F = 0.4; (b) F = 0.6; (c) F = 2;
(d) F = 20.

F = 20). Numerical results actually show a similar diverging lee wave wake at very
weak stratification (F = 200), although the results are not presented here. It should
also be noted that the method of stationary phase predicts that the wave amplitude
decreases in proportion to d−1/2, where d is the distance from the obstacle. Then the
wave amplitude in the far field decreases, without viscosity and diffusion.

4.3. Drag coefficient of the sphere

The drag acting on a body can be calculated as a surface integral of normal and shear
stresses and it can be separated into two parts. One is the pressure drag coefficient
Cp due to the pressure distributions and the other is the frictional drag coefficient Cf ,
which represents the contribution from the tangential stresses.

To be explicit, these two coefficients are calculated from the formulae

Cp =
1

1
2
ρoW 2 πa2

∫
S

(−pδi,k)nk dS, (34)

and

Cf =
1

1
2
ρoW 2 πa2

∫
S

µ

(
∂ui

∂xk
+
∂uk

∂xi

)
nk dS, (35)

where i denotes the mean flow direction (vertically upward), nk is the component of
the unit vector normal to the sphere surface and dS is the area unit of the surface
integral. The total drag coefficient Cd is given by the sum of Cp and Cf .
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Figure 11. Froude number dependence of the drag coefficients: (a) total drag coefficient, Cd;
(b) pressure drag coefficient, Cp; (c) frictional drag coefficient, Cf . Each plot is for three representative
Reynolds numbers. ◦, Re = 50; •, Re = 100; ∗, Re = 200.

Figure 11 shows the Froude number dependence of Cd, Cp and Cf for three
representative Reynolds numbers. These three coefficients all increase monotonically
with increasing stratification, i.e. with increasing 1/F .

It is of interest to note that the increase of the drag coefficient Cd is rather small
until the complete collapse of the rear vortex occurs at F ∼ 20 (cf. figure 8); then
it increases considerably (F < 20). Although the drag increases due to the rearward
movement of the separation point and the subsequent change in the pressure and
shear stress distributions, their effect leads to only less than about a 25% increase
compared to the unstratified drag. For example, at Re = 200, the value of Cd at
F = 10 is about 1.0, only 25% larger than the unstratified value Cd = 0.8. The drag
increases rapidly for F < 10 (1/F > 0.1) and it reaches more than ten times its
homogeneous counterpart at F = 0.2.

To investigate the mechanism of the considerable increase of drag for F < 10
(1/F > 0.1), we plot the contours of dynamic pressure in figure 12. Comparison
of figure 12(a) (F = 200) with figure 12b–d (F = 2, 1, 0.4) shows that the pressure
contours at low Froude numbers accumulate near the rear stagnation point of the
sphere, showing the significant pressure reduction there (see also figure 13). This causes
the drag increase at low Froude numbers. At the lowest Froude number described
(F = 0.4), the pressure distributions also show the lee wave patterns identified in the
density contours (cf. figure 10a). It is of interest to note that at F = 2 (figure 12b) the
pressure near the equator (z ≈ 0) is higher than at F = 200. This anomalous pressure
distribution can be explained by Bernoulli’s theorem developed below.
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Let us consider a streamline originating upstream near the centre axis of the flow.
Bernoulli’s theorem for steady inviscid Boussinesq fluid can be derived from (10) and
(11) in the limit of Re→∞ and Pe→∞ as

∂

∂s

(
p+ 1

2
u2
)

= − ρ

F2

∂z

∂s
, (36)

where s is the coordinate along the steady streamline.
According to this theorem, the sum of pressure and kinetic energy per unit volume

changes due to the source term on the right-hand side of equation (36), which
represents the effect of stratification. Since the source term can be rewritten as

∂z

∂s
=
w

|u| , (37)

it takes a positive large value near the equator of the sphere (z = 0) where w/|u| ' 1
and the perturbation density ρ is negative. Then the total head increases along the
streamlines near the equator. This means the possibility of the simultaneous increase
of the velocity u and the dynamic pressure, which could explain why in the case of
F = 2, the pressure can be larger than the case of F = 200 even when the large
velocity leading to the rear jet (cf. figures 7a, 14) is induced.

As the fluid approaches the rear stagnation point, the source term becomes small
(∂z/∂s ' 0) but it becomes large again on the rear axis of the flow where w/|u| ' 1
and ∂z/∂s ' 1. Since the density perturbation ρ is negative and its modulus |ρ|
becomes larger near the axis, the acceleration effect is largest when the fluid particle
moves along the rear axis. Then the vertical fluid movement is most accelerated along
the rear axis, generating a vertical jet.

Near the rear stagnation point, the pressure becomes very low. Since the source term
is small near the stagnation point, the reduction of the pressure directly corresponds
to the increase of velocity, which leads to the generation of a strong vertical jet. To see
this process, the pressure distribution on the sphere is shown in figure 13 for various
Froude numbers (Re = 200). For weak stratification (F = 200), the separation point
of the boundary layer is almost identical to the unstratified case and it is located
somewhat downstream of the point where the pressure gradient reverses sign. At
lower Froude numbers (F 6 1) there is a clear decrease of the pressure near the rear
stagnation point. The pressure reduction becomes more significant for lower Froude
numbers, corresponding to the formation of a stronger jet.

The inviscid lee wave drag has been studied theoretically by Warren (1960). He
applied a linear approximation and used integral transform methods to solve the
equation of motion, then used the methods of steepest descents and stationary phase
to obtain the internal wave field in the limit of t → ∞. He found that Cd (= Cp)
increases with decreasing F , except for the extremely small Froude numbers (F � 0.1)
where the drag decreases again and tends to zero (cf. his figure 16). The increase of
drag is in agreement with our results. However, there is a large quantitative difference.
His results show Cd ' 0.1 at F = 1 and Cd ' 6.8 at F = 0.2, but our results show
much larger increase in Cd. A formal reason would be the nonlinear effects neglected
in the theory, but more direct explanation is the failure of the theory in predicting
the jet formation observed in our study.

In an experiment on the unsteady descent of a particle, Srdić-Mitrović et al. (1999)
estimated the drag coefficient in ‘steady’ flow using a formula commonly used in multi-
phase flow analysis. The formula accounts for the unsteadiness of the mean flow and
represents a balance between the inertial force and the sum of the buoyancy force,
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Figure 14. Distribution of (a) the vertical velocity w and (b) density perturbation ρ near the sphere
for various Froude numbers, on the line z = 0. The symbols within the box apply to both figures.

steady drag, added-mass effect and the history (Basset) term. The results obtained
by using that formula were compared with the total static buoyancy force exerted
on the caudal fluid column. The difference was small and they concluded that the
observed drag increase, which is an order of magnitude larger than its homogeneous
counterpart, is mainly due to the static effect of the buoyancy force on the caudal
fluid and that the internal-wave contribution to the drag was small.

The result is consistent with our results where the drag coefficient was calculated
directly. This shows that the rear caudal fluid column or the filament/jet is essential
to the significant increase of drag coefficient. In the experiments of Srdić-Mitrović
et al. (1999), the significant drag increase was observed at rather weak stratifications
(3 < F < 10). In our study some drag increase was observed for F < 10, but very
rapid increase was not observed until much lower Froude numbers (F < 1). This
would be due to the difference in the mean vertical density distribution investigated.
The caudal fluid column in the experiments of Srdić-Mitrović et al. (1999) is the
result of the dragging of upper homogeneous fluid into the stratified interfacial layer,
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so that the primary factor is the sudden change of density gradient and may not be
the continuous density gradient of the stratified layer. On the other hand, the rear
jet observed in our study is the result of the continual dragging and rupture of the
thin layers of lighter fluids. Then the stratification strength itself is of importance
in determining the flow configurations. It is of interest, however, that the large
stratification drag can be explained similarly by the generation of the caudal fluid
column or the round jet, independent of the precise mechanisms by which they have
been generated.

In the experiments of Srdić-Mitrović et al. (1999), the caudal fluid column and
the subsequent drag increase were observed only in the range of 1.5 < Re < 15
(3 < F < 10). At high Re (> 15), the particle drags only an insignificant amount of
upper-layer fluid because of the flow separation behind the particle, so that the drag
showed a satisfactory agreement with that in homogeneous fluids. In our study of
continuously stratified fluids, the dragging of the upper layer occurred even at high
Reynolds numbers (Re > 15). As is shown in figure 6(a, b), dragged fluid exists in
a continuously stratified fluid even when flow separation exists. The dragging of the
upper-layer fluid was probably not observed in the above experiments because the
dragged layer is thin when flow separation exists. Since the volume of dragged fluid
was small, its effect on the drag would have been small. In continuously stratified
fluids, most fluid is dragged at low Froude numbers even after the flow separation has
been completely suppressed. Then significant drag increase was observed at sufficiently
low Froude numbers (F < 1).

At low Reynolds numbers (Re < 1.5), dragging of fluid was not observed in the
experiments of Srdić-Mitrović et al. (1999) because the slow descent of particles
allowed them to adjust to background conditions. This implies that the effect of
density diffusion prevented the formation of the caudal fluid. In our study the
Reynolds number was not less than 10 and the low Reynolds number effect was
not investigated. However, in completely continuously stratified fluids, the continual
breakup of the dragged density layers due to diffusion is followed by the continual
generation of the newly dragged layers, so that we can expect similar dragging of the
upper fluid even at low Reynolds numbers.

Comparison of figure 11(b) with figure 11(c) further shows that a larger contribution
to the total drag coefficient Cd comes from Cf than Cp. This is an indication that
the drag increase is due to the high-velocity flow along the sphere surface which
contributes to Cf (cf. figure 14), in addition to the direct pressure reduction on the
rear surface which contributes to Cp.

4.4. Velocity and density boundary layers

Figure 14 shows how the distributions of vertical velocity and density perturbation
(Re = 200) near the sphere surface vary with the Froude number. As was mentioned
in § 3.2, the theoretical estimation of the velocity boundary layer thickness is δv = 0.1
and the density boundary layer thickness is δd = 0.0053. The thickness of the velocity
boundary layer (δv ∼ 0.1) agrees well with the theoretical prediction, while the density
boundary layer thickness (δd = 0.02) is several times thicker. This makes unnecessary
the use of an extremely fine grid and makes the computation somewhat easier.
Indeed we have tested a computational grid with half mesh size, but the density
distributions in the density boundary layer generally showed quantitatively negligible
differences.

When leaving the sphere surface (figure 14a), w increases from zero to a maximum
value which generally becomes larger for lower Froude numbers. At the same time,
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the velocity boundary layer becomes thinner with stratification. For very low Froude
numbers (F = 0.1, 0.2), w oscillates in the r-direction. The region of w < 1 exists
to compensate for the very large velocity near the surface and the oscillation is
closely related to the appearance of internal waves near the line z = 0 at very strong
stratification (F 6 0.2). This trend could also be identified in figure 10, which shows
that the line Φ = π/4 moves nearer to z = 0 with increasing stratification. Far
from the surface (r − 1 > 0.3), w asymptotes to its mean flow value (w = 1). These
phenomena are consistent with jet formation along the sphere surface as described
in § 4.1 which corresponds to the low pressure at low Froude numbers (F 6 2) as
described in § 4.3.

On the other hand, the thickness of the density boundary layer is rather independent
of the stratification. At weak stratification (2 6 F 6 200) the thickness increases with
the collapse of the rear vortex. As is shown in figure 6, the distance between isopycnals
becomes larger with the rearward movement of the separation point. The isopycnals
which accumulate near the separation point at weak stratifications become sparse
due to the collapse of the rear vortex and the subsequent movement of the isopycnals
nearer to the rear stagnation point. This results in the thicker density boundary layers.

With the further decrease of F , however, the thickness decreases again to the
unstratified level, and for very strong stratification (F 6 1), there is a significant
decrease of the perturbation density ρ at the sphere surface (r − 1 = 0) and it
asymptotes to zero in the low Froude number limit. This corresponds to almost
horizontal isopycnals even very near the obstacle.

5. Conclusions
The flow around a sphere moving vertically in stratified fluid has been studied

numerically. We found the complete collapse of the standing vortex behind a sphere
when the stratification is strong. Our numerical simulations clarified that a thin
filament behind a sphere found in the visualization experiments by Ochoa & Van
Woert (1977) is actually a strong vertical jet on the rear axis of the flow.

The processes of vortex collapse and jet formation have some similarities to non-
diffusive mechanisms. If density is conserved along the flow, all the isopycnals that
existed initially in front of the downward moving sphere accumulate very near its
front surface indefinitely with time, and they generate a singularity along the rear
axis of the flow, generating a vertical jet. This process has been predicted by Eames
& Hunt (1997) for inviscid flow without a buoyancy effect.

However, when there is density diffusion as described in this study, the piling-up
of the isopycnals is halted at some level so that steady state is realized, and the
singularities on the rear axis do not appear. Therefore, the jet will not be generated
without a buoyancy force. The strong jets observed in this study most likely have
their origin in the conversion of potential energy to vertical kinetic energy.

The observed rear jet contributes to the significant increase of the drag coefficient,
reaching more than ten times its homogeneous counterpart at very low Froude
numbers (F 6 0.2). A similar increase of the drag has been observed by Srdić-Mitrović
et al. (1999) when a sphere descends from a homogeneous layer into a stratified fluid.
They observed significant drag increase at much weaker stratifications (3 < F < 15)
since the dragging of the upper layer fluid occurred even at weak stratifications. The
drag increase was transient, however, since the caudal fluid column is ruptured and
successive dragging of the upper fluid does not occur in their context.

In this study for completely continuously stratified fluid, the dragging of the upper-
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layer fluid and the rupture of the dragged layers due to diffusion occurs successively
and the high-drag states continue steadily. However, it is of interest to note that the
large drag increase can be explained similarly by the generation of the caudal fluid
column or the jet, independent of their generation mechanisms.

This study is an extension of the PhD thesis of C.T., which has been supported by
Universidad Autónoma de Baja California under grant 4031 and Consejo Nacional
de Ciencia y Tecnologı́a under grants E1421-D920 and through program of Inicio a
la Investigación I27039-T respectively. Partial support for the computational facilities
has been provided by CONACYT under grant 28794-T. We would like to acknowledge
the discussions with Federico Graef and Julio Sheinbaum. We are also grateful for the
use of the equipment and facilities of the Hydraulic Laboratory of Scripps Institution
of Oceanography and thank Clint Winant who suggested the experiment by Ochoa
& Van Woert (1977) and for his comments.

Appendix

Two of the present authors did a series of experiments in a 1 m3 cubic tank, slowly
lowering and raising at different speeds acrylic spheres of different sizes suspended
by a thin wire in linearly stratified salt water (Ochoa & Van Woert 1977). The
stratification was made by quickly stirring an initially two-layer system, fresh on top,
salty below, then waiting until it settled completely. The density stratification was
measured by a conductivity probe, taking samples at about every 10 cm vertically in
the tank, and calibrated against bucket samples with an hydrometer. The speed was
set by a calibrated variable motor.

Figure 15 shows typical shadowgraphs of sphere wakes taken at rather high
Reynolds numbers. At Re = 1524 and F = 12.62 (figure 15a) we can observe fila-
ments downstream of the sphere. This, along with figure 1, shows the approximate
axisymmetry of the flow at rather high Reynolds numbers (Re > 762). In some
shadowgraphs (figure 15b), the collapse of the rear vortex was incomplete at higher
Reynolds numbers (Re = 1900, F = 15.79), but the vortex was almost completely col-
lapsed at a lower Froude number (figure 15c) with approximately the same Reynolds
number. Figure 15c shows, however, a meandering of the filament, showing that this
is an asymmetric wake (cf. see figure 16). Figure 15d shows a turbulent wake at a
higher Reynolds number Re = 2667 (F = 14.9) with a Froude number similar to
figure 15(b). These figures indicate that in the presence of density stratification the
transition to turbulence occurs at higher Reynolds numbers than in homogeneous
fluids.

Figure 16 shows the parameters investigated in the experiments by Ochoa & Van
Woert (1977). The dashed line, which separates the two parameter regions with and
without rear filaments/jets, shows that the critical Froude number necessary for the
complete collapse of the rear vortex decreases with increasing Reynolds number. This
increase is more rapid than the numerical results with the axisymmetry assumption
and at lower Reynolds numbers (Re 6 1000). The difference may be due to the
assumption of axisymmetry applied in the numerical simulation, which will reduce
the critical Froude number in the Reynolds number range of 200 6 Re 6 1000. If the
flow is not axisymmetric, stronger stratification would be necessary to suppress the
rear vortical wake.
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(a) (b)(a)

(c) (d )

Figure 15. Shadowgraphs of the sphere wakes at high Reynolds numbers.
(a) (F, Re) = (12.64, 1524); (b) (15.79, 1900); (c) (10.54, 1905); (d) (14.9, 2667).
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Figure 16. An enlargement of the diamond region depicted in figure 2 which shows the experimental
results by Ochoa & Van Woert (1977): �, vortical wake; +, rear filament/jet. The region where a
non-axisymmetric wake was observed is shown by an arrow. Separation angle, θs, measured from
the rear stagnation point obtained in this numerical study is also shown. 4, θs = 10; �, θs = 20; •,
θs = 40; ◦, θs = 60.
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Srdić-Mitrović, A. N., Mohamed, N. A. & Fernando, H. J. S. 1999 Gravitational settling of
particles through density interfaces. J. Fluid Mech. 381, 175–198.

Taneda, S. 1956 Experimental investigation of the wake behind a sphere at low Reynolds numbers.
J. Phys. Soc. Japan. 11, 1104–1108.

Torres, C. R. 1997 On the behavior of a sphere in stratified fluids. PhD Thesis (in Spanish), Centro
de Investigación Cientı́fica y de Educación Superior de Ensenada, B. Cfa. México, 103 pp.
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